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NOMENCLATURE 

wall shear stress function; 
freestream velocity time dependence; 
Prandtl number; 
heat flux at wall; 
quasi-steady wall heat flux; 
temperature; 
time; 
velocity at edge of boundary layer; 
velocity component in x-direction; 
velocity component in y-direction; 
coordinate along surface; 
coordinate normal to surface. 

Greek symbols 

r(n), complete gamma function; 
V, dimensionless y coordinate; 
6 dimensionless temperature; 
&(r), wali heat flux function; 
9, dimensionless stream function; 
v, kinematic viscosity; 
5. dimensionless time; 
TW, wall shear *tress; 
TW, Qs, quasi-steady wall shear; 
W dimensionless frequency. 

Subscripts 

Qs3 quasi-steady; 
W, wall; 
co, freestream condition; 

denotes differentiation with respect to q; 
denotes differentiation with respect to T. 

1. INTRODUCTION 

THIS communication reports on the extension of a method 
developed by the author for the study of transient stagnation 
point flows [l] to the study of the thermal response of 
these flows. It is shown that the thermal boundary-layer 
equation is reducible to a first order ordinary differential 
equation which governs the transient wall heat flux for all 
time and yields results for highly unsteady conditions. 

2. GOVERNING EQUATIONS 

The thermal response of a two-dimensional, unsteady, 
laminar, incompressible, constant property boundary layer 
in the vicinity of a front stagnation point is considered. 

*Presently: Argonne National Laboratory, Components 
Technology Division, Argonne, Illinois, U.S.A. 

The freestream velocity is initially steady and at some 
instant it begins to vary in magnitude as specified by the 
function g(t) in equation (1). 

U(x, t) = uxg(t) for t > 0 and g(f) = 1 for t < 0. (1) 

The temperature of the fluid freestream, T,, and the 
surface, T,, are assumed to be uniform and constant for all 
time. The solution to this problem before the initiation of 
the transient freestream behavior is the well known solution 
for the flow and heat transfer in Hiemenz flow. 

To facilitate analysis the momentum boundary-layer 
equations are transformed by a stream function defined by 

ay 
a=--, 

aY 

ay 
lJ= -- 

8X (2) 

and by 

7 = at, 9 = yfaglvP2, 
Y(x, y, t) = Xk7V2dJf~~ rl). 

(3) 

The temperature field is transformed by 

T-T, es, rl) = T_T’ (4) 
W m 

Under these transformations the flow equations take the 
form 

with 

$fJ’(T, 0) = c$(r, 0) = 0 (6) 
f#J’(T, co) = 1 (7) 

&(7 i 0, q) = steady Hiemenz flow velocity profile (8) 

and the energy equation is transformed to 

with 

e(T, 0) = 1, qr, Co) = 0 (10) 

e(T < 0, fj) = steady temperature profiles for 
Hiemenz flow. (11) 

In the preceding, the primes denote differentiation with 
respect to f and the dot with respect to 5 and it has been 
assumed that g(t) # 0. 
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3. \IETHOD OF SOLLfTIOh 

The method of asymptotic integration is used to integrate 
equations (5) and (9). Meksyn [2] has employed this tech- 
nique to analyze the steady state equations. To the author’s 
knowledge, this method has not been used for the transient 
equations. The flow equations were analyzed in reference [l]. 
Thesame methodis now employed to analyze the transient 
energy equation. 

In brief series solutions of the form 

d’(5.V) = i anir); (12) 
“=Z 

(13) 

are assumed for equations (5) and (9). The coefficients a*(~) 

and 0,(t) are unknowns and their solutions are dictated 
by the boundary conditions, [equations (7) and (lo)], at 
the outer edge of the viscous and thermal layers. Physically 
Q(T) and e,(r) are proportional to the instantaneous wall 
shear and heat flux. Employing the method of asymptotic 
integration yields equations (14) and (15) which are to be 
solved for a2(r) and O,(T). 

where 

Equations (14) and (15) are first order ordinary differential 
equations which have the initial conditions that a2(0) and 
B,(O) are equal to the Hiemenz flow values of wall shear 
and heat flux. 

4. RESULTS AND CONCLUSIONS 

Equations (14) and (15) can readily be integrated 
numerically. Results are presented for two different forms of 
g(r). The wall shear and heat flux results are presented in 
ratio to their quasi-steady responses denoted by rW,cs and 
qN,,cs_ These ratios reflect the error which would result 

from using the quasi-steady approximations for problems 
which are highly unsteady. 

preceding phenomena is the result of acoustic streaming 
near the wall. For the wall shear and heat flux the maximum 
unsteadiness occurs while the freestream velocity is de- 
celerating. In addition, the maximum unsteadiness of the 
heat flux increases with increasing Prandtl number. 

Figure 1 shows the phase shifts H of the maximums in 
wall shear and heat flux relative to the maximums in free- 
stream velocity for A = 0.1 and various frequencies w. 
The maximum shear leads the maximum velocity and the 
phase advance increases with frequency and approaches 
the asymptotic limit of 45” predicted by Lighthill [3]. 

These results for shear phase advance are in excellent 
agreement with Ishigaki [4]. The maximum wall heat flux 
lags behind the maximums in velocity and this phase lag 
increases with frequency. It is seen that this phase lag 
increases beyond the asymptotic limit of 90” found by 
Lighthill using a first order perturbation analysis. 

Figure 2 shows results for a larger amplitude case, 
A = 0.3 and w = 5.6. Both the wall heat flux and the shear 
undergo large departures from the quasi-steady solutions. 
Furthermore, the responses are no longer sinusoidal. The 
heat flux exhibits the greatest departure from sinusoidal 
behavior with a “spike-like” peak occurring at the point 

of maximum unsteadiness. In addition the wall heat flux 
ratio fluctuates predominately above the quasi-steady solu- 
tion Thus the time mean average wall heat flux over a 
cycle is enhanced considerably by the increase in amplitude 
of the freestream velocity fluctuation. It is to be noted 
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FIG. 1. Phase shifts 0 of maximum wall heat flux and shear 
relative to the maximum freestream velocity for oscillating 

freestream: g(z) = 1 + A sin(~), A = 0.1, Pr = 0.72. 

Example 1: g(r) = 1 + A sin(wr) 
This case represents a stagnation point flow for which 

at time I = 0 the freestream velocity begins to oscillate in 
magnitude.with amplitude A and frequency o about a mean 
velocity. Calculations were carried out for A = 0.1 and for 
various frequencies w. At large 7 when starting transients 
have disappeared, neither the wall shear or heat flux fluctuate 

that the maximum unsteadiness of the heat flux occurs 
while the boundary layer is experiencing an adverse 
pressure gradient and the wall shear is approximately at 
its minimum value. The preceding clearly demonstrates 
that freestream flow oscillations can greatly enhance surface 
heat transfer for certain combinations of frequency and 
amplitude. The phase advance of the wall shear for the 

with equal amplitude about the quasi-steady solutions. The large (A = 0.3) and small amplitude (A = 0.1) cases were 
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FIG. 2. Variation of wall heat flux and shear stress ratios 
with time for stagnation point flow: g(r) = 1 + A sin(~). 

I I I I 

FIG. 3. Variationofwall heat flux and shear stress ratios with 
time for stagnation point flow: g(r) = 1 + c( 1 -e-“), c > 0. 

nearly identical for a given o. However, the phase lag of 
the wall heat flux increased from 65” for the small amplitude 
case to 125” for the large amplitude case at a frequency 
of o = 5.6. 

The author believes that some cases of enhanced surface 
heat transfer under oscillatory flow conditions are associ- 
ated with transient boundary layer separation or incipient 
separation. However, flow cases involving transient flow 
separation cannot presently be analyzed due to the limi- 
tations imposed by the series inversion used, see [l]. A 
paper extending the present method of analysis to the study 
of heat transfer in transient separating boundary layers 
will be forthcoming. 

Example 2: g(r) = 1 +c(l -e-r’) 
This case represents a stagnation point flow in which the 

magnitude of the freestream velocity increases or decreases 
exponentially with time to a new steady value for large r. 
Figure 3 shows the transient wall shear and heat flux ratios 
for accelerating flows, c > 0. For accelerating flows the wall 
shear, rw, is greater than the quasi-steady results and the 
heat flux, qw, is less than the quasi-steady results. Just the 
opposite behavior is found to occur for decelerating flows. 
The wall heat flux for both accelerating and decelerating 
flow exhibits increased unsteadiness with increasing Prandtl 
number and corresponding larger times required for the 
thermal transients to disappear and for steady state to be 
reached. To the author’s knowledge heat transfer results 
have not been reported for this case. 

In conclusion, the method of solution presented can also 
readily be utilized to analyze the thermal response of 
stagnation point flows for other forms of g(r) or for cases 
where either or both T, and T, are functions of time. 
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